**** CONFIDENTIAL **** **** PREDECISIONAL DOCUMENT ****

SUMMARY SCORESHEET FOR COMPUTING PROJECTED HRS SCORE

SITE NAME: Cajon Landfill				
CITY, COUNTY: San Bernardino, San Bernardino County				
EPA ID #: <u>CAD983603267</u> B				
PROGRAM ACCOUNT #: FCAI 866 PAA				
Lat/Long: 34010/50"N/117020'48W T/R	15: 1N/5 W	1/set 11		
THIS SCORESHERT IS FOR A: PA X S	SI	LSI		
SIRe PA Redo Other (Specify)				
RCRA STATUS (check all that apply):				
Generator Small Quantity Generator	Transport	er TSDF		
Not Listed in RCRA Database as of (date of				
STATE SUPERFUND STATUS:				
BEP (date)/ WQARF	(date)/_	<u>. /</u>		
/ No State Superfund Status (date) / /	·			
	S pathway	S ² pathway		
Groundwater Migration Pathway Score (Sgw)	100			
Surface Water Migration Pathway Score (S _{SW})	* '			
Soil Exposure Pathway Score (S _S)	*			
Air Migration Pathway Score (S _a)	*			
$S_{gw}^2 + S_{sw}^2 + S_{s}^2 + S_{a}^2$	**********			
$(S_{gw}^2 + S_{sw}^2 + S_{s}^2 + S_{a}^2)/4$	**************************************	·		
$\int (S_{gw}^2 + S_{sw}^2 + S_{s}^2 + S_{a}^2)/4$		50		

*Pathways not assigned a score (explain):

These pathways were qualitatively evaluated, but did not have a

Significant impact on the score.

>/hrs

21-May-1991

GROUNDWATER MIGRATION PATHWAY SCORESHEET

Factor Categories and Factors

in f	Likelihood of Release	Maximum Value	Projected Score	Rationale	Data Qual.
1. 2.		550	550	· · ·	
	2a. Containment	10			
	2b. Net Precipitation	10			- All and a
	2c. Depth to Aquifer	5		the second second second	
	2d. Travel Time 2e. Potential to Release	35			a series self-refer
	[Lines 2a x (2b+2c+2d)]	500			
3.					
	of lines 1 or 2e)	55 0	550	****	
	Waste Characteristics				
	Toxicity/Mobility	a	100		
4. 5.		a	100		
6.			<i>V</i>	***	
	4×5 , then use Table 2-7)	100	10		
	Targets				
7.		50	50		
8.	Population ^u 8a. Level I Concentrations	b	60,000		
	8b. Level II Concentrations	b	- 60,000		
	8c. Potential Contamination	b			-
	8d. Population (lines 8a+8b+				
9. 10.	Resources Wellhead Protection Area	5 20			
11.		b .	1.02 050		
	1418015 (11105) 104 / 110 /		00000		
	Likelihood of Release		0 2 600 600		
12.	Aquifer Score		33 0,27 5,000		
12.	[(Lines $3 \times 6 \times 11)/82,500$] ^c	100	4,003.33		
Grou	ndwater Migration Pathway Score				
		•			
13.	Pathway Score (Sgw), (highest value from line 12 for all aquifers evaluated)	100	100		

a Maximum value applies to waste characteristics category.

b Maximum value not applicable.

c Do not round to the nearest integer.

d Use additional tables.

GROUNDVATER PATHVAY CALCULATIONS

8. Population

Actual Contamination

Well Identifier	Contaminant Detected	Concentration (Note Units)	Benchmark	(A) Apportioned Population Well Serves	(B) Level* Multip.	 (A × I
Colima	PUE	21.3	5_	2000	10	20,000
Durky	PCE	28.5	_5	2,000	10	20,000
Gurdena	PCE	51.3	5	2,000	<u> 10</u>	20,000
* Multipliers - Level I	= 10			(AXB) Level		60,000

Potential Contamination

	Distance (miles)	Total Number of Wells Within Distance Ring	Total Population Served by Wells Within Distance Ring	Distance-Weighted Population Values "Other Than Karst" (Table 3-12)*
	0 to 1/4		(Mary Cont.) And (Mary Cont.) And (Mary Cont.)	
	>1/4 to 1/2			
	>1/2 to 1		***************************************	
	>1 to 2		ne Alexandra Alexandra (Alexandra de Alexandra de Alexand	
	>2 to 3			
	>3 to 4			
		engen para en la companya de la comp	Sum (A)	

Potential	${\tt contamination}$	=	Sum (A)	=	
			10		

/hrs	Aquifer	Evaluate

^{*} For drinking water wells that draw from a karst aquifer, see the Distance-Weighted Population Values for "Karst" in Table 3-12.

RATIONALE

- 1. There has been a release of several volatile organic compounds from the Cajon Landfill to groundwater beneath and downgradient of the site. PCE, TCE, Freon 12, DCE, and vinyl chloride have been detected at levels that exceed EPA Maximum Contaminant Levels (MCLs) for drinking water or the EPA Ambient Water Quality Criteria in downgradient monitoring wells. A few of the contaminants were additionally detected in upgradient on-site monitoring wells; however, because the downgradient concentrations were at least three times greater than background, a release from the site can be documented.
- 2. The toxicity of PCE is 100 and the mobility is 1 since PCE has migrated to groundwater. Although vinyl chloride was detected in groundwater and has a toxicity of 10,000, PCE is of concern in the drinking water wells and maximizes the pathway score.
- 3. The landfill occupies 127 acres (5,532,120 square feet). 5,523,120/3,400 = 1,624.45; therefore the assigned value is 100. Additionally, actual contamination of drinking water wells may be attributable to the site.
- 4. There is Level I Contamination in three downgradient municipal wells. The contamination may be attributable, at least in part, to the Cajon Landfill site.
- 5. PCE has been detected in three downgradient municipal wells at levels which exceed the MCL of 5 µg/L. This contamination appears to be attributable, at least in part, to the Cajon Landfill site.
 - San Bernardino Water Department serves 100,000 people with a 35-well blended system. 100,000/35 = 2,857.14 people served by each well.
 - See scoresheet calculations.

Commission of the second of the second

6. Because the three wells at Level I produced a pathway score of 100, Level II and potential contamination population were no evaluated.